Frequency Allocation Problems for Linear Cellular Networks

نویسندگان

  • Wun-Tat Chan
  • Francis Y. L. Chin
  • Deshi Ye
  • Yong Zhang
  • Hong Zhu
چکیده

We study the online frequency allocation problem for wireless linear (highway) cellular networks, where the geographical coverage area is divided into cells aligned in a line. Calls arrive over time and are served by assigning frequencies to them, and no two calls emanating from the same cell or neighboring cells are assigned the same frequency. The objective is to minimize the span of frequencies used. In this paper we consider the problem with or without the assumption that calls have infinite duration. If there is the assumption, we propose an algorithm with absolute competitive ratio of 3/2 and asymptotic competitive ratio of 1.382. The lower bounds are also given: the absolute one is 3/2 and the asymptotic one is 4/3. Thus, our algorithm with absolute ratio of 3/2 is best possible. We also prove that the Greedy algorithm is 3/2-competitive in both the absolute and asymptotic cases. For the problem without the assumption, i.e. calls may terminate at arbitrary time, we give the lower bounds for the competitive ratios: the absolute one is 5/3 and the asymptotic one is 14/9. We propose an optimal online algorithm with both competitive ratio of 5/3, which is better than the Greedy algorithm, with both competitive ratios 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks

As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...

متن کامل

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

Demand-Driven Dynamic Spectrum Allocation in Heterogeneous Cellular Networks

In this paper, we address the dynamic spectrum allocation problem in next generation cellular networks under the coordinated dynamic spectrum access (CDSA) model. Firstly, considering spectrum demands of base stations, we formulate spectrum allocation under physical interference models as a nonlinear optimization problem. Then, we propose a demand-driven dynamic spectrum allocation algorithm by...

متن کامل

Joint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks

Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...

متن کامل

Optimization Algorithm of Resource Allocation IEEE802.16m for Mobile WiMAX

Multi user resource allocation is one of the key features towards high speed wireless network based on Orthogonal Frequency Division Multiplexing Access (OFDMA). According to IEEE802.16m (Mobile WiMAX) standard resource allocation problem has to be performed on a frequency and time two-dimensional space with the Physical and logical resource units (PRU and LRU) including Distributed logical res...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006